1,092 research outputs found

    Serum vitamin D in patients with mild cognitive impairment and Alzheimer's disease

    Get PDF
    Objectives: To determine the relevance of Mini-Mental State Examination (MMSE), serum 25-hydroxyvitamin D (25(OH)D3), and 1,25(OH)2D3 concentrations to mild cognitive impairment (MCI) and various stages of Alzheimer's disease (AD). Materials and Methods: The study included 230 participants (>74 years) allocated to three main groups: 1-healthy subjects (HS, n = 61), 2-patients with MCI (n = 61), and 3- patients with Alzheimer's disease (AD) subdivided into three stages: mild (n = 41), moderate (n = 35), and severe AD (n = 32). The cognitive status was evaluated using MMSE. Serum 25 (OH)D3 (ng/ml) and 1,25(OH)2D3 concentrations (pg/ml) were determined by competitive radioimmunoassay. Results: MMSE scores and 25(OH)D3 were decreased in MCI and all stages of the AD in both genders. MMSE variability was due to gender in HS (11%) and to 25(OH)D3 in MCI (15%) and AD (26%). ROC analysis revealed an outstanding property of MMSE in diagnosis of MCI (AUC, 0.906; CI 95%, 0.847–0.965; sensitivity 82%; specificity, 98%) and AD (AUC, 0.997; CI 95%, 0.992–1; sensitivity, 100%; specificity, 98%). 25(OH)D3 exhibited good property in MCI (AUC, 0.765; CI 95%, 0.681–0.849; sensitivity, 90%; specificity, 54%) and an excellent property in diagnosis of AD (AUC, 0.843; CI 95%, 0.782–0.904; sensitivity, 97%; specificity, 79%). Logistic analyses revealed that, in MCI, MMSE could predict (or classify correctly) with 97.6% accuracy (Wald, 15.22, β, −0.162; SE, 0.554; OR = 0.115:0.039–0.341; p =.0001), whereas 25(OH)D3 with 80% accuracy (Wald, 41,013; β, −0.213; SE, 0.033; OR = 0.808: 0.757–863; p =.0001). 25(OH)D3 was the only significant predictor for the severe AD and contributed to MMSE variability. Age and gender were significant predictors only in the moderate AD. In patients with MCI, 25(OH)D3 and 1,25(OH)2D3 were correlated men, but in case of the AD, they were correlated in women. Conclusions: MMSE and serum 25(OH)D3 concentrations could be useful biomarkers for prediction and diagnosis of MCI and various stages of the AD. The results support the utility of vitamin D supplementation in AD therapy regimen. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc

    Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix

    Full text link
    Exchange biased composites of ferromagnetic single-domain Ni nanoparticles embedded within large grains of MnO have been prepared by reduction of Nix_xMn1−x_{1-x}O4_4 phases in flowing hydrogen. The Ni precipitates are 15-30 nm in extent, and the majority are completely encased within the MnO matrix. The manner in which the Ni nanoparticles are spontaneously formed imparts a high ferromagnetic- antiferromagnetic interface/volume ratio, which results in substantial exchange bias effects. Exchange bias fields of up to 100 Oe are observed, in cases where the starting Ni content xx in the precursor Nix_xMn1−x_{1-x}O4_4 phase is small. For particles of approximately the same size, the exchange bias leads to significant hardening of the magnetization, with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure

    Structural Insights into Differences in Drug-binding Selectivity between Two Forms of Human α1-Acid Glycoprotein Genetic Variants, the A and F1*S Forms

    Get PDF
    Human α1-acid glycoprotein (hAGP) in serum functions as a carrier of basic drugs. In most individuals, hAGP exists as a mixture of two genetic variants, the F1*S and A variants, which bind drugs with different selectivities. We prepared a mutant of the A variant, C149R, and showed that its drug-binding properties were indistinguishable from those of the wild type. In this study, we determined the crystal structures of this mutant hAGP alone and complexed with disopyramide (DSP), amitriptyline (AMT), and the nonspecific drug chlorpromazine (CPZ). The crystal structures revealed that the drug-binding pocket on the A variant is located within an eight-stranded β-barrel, similar to that found in the F1*S variant and other lipocalin family proteins. However, the binding region of the A variant is narrower than that of the F1*S variant. In the crystal structures of complexes with DSP and AMT, the two aromatic rings of each drug interact with Phe-49 and Phe-112 at the bottom of the binding pocket. Although the structure of CPZ is similar to those of DSP and AMT, its fused aromatic ring system, which is extended in length by the addition of a chlorine atom, appears to dictate an alternative mode of binding, which explains its nonselective binding to the F1*S and A variant hAGPs. Modeling experiments based on the co-crystal structures suggest that, in complexes of DSP, AMT, or CPZ with the F1*S variant, Phe-114 sterically hinders interactions with DSP and AMT, but not CPZ. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc

    Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes

    Get PDF
    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighbouring local lattice distortion such as Stone-Thrower-Wales defects. The stability under the electron beam of these nanotubes has been studied in two extreme cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.Comment: 25 pages, 13 figure

    Vector-virus interaction affects viral loads and co-occurrence

    Get PDF
    BackgroundVector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology.ResultsUsing a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector’s transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector’s gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load.ConclusionsCombined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course

    Experimental observation of high field diamagnetic fluctuations in Niobium

    Get PDF
    We have performed a magnetic study of a bulk metallic sample of Nb with critical temperature Tc=8.5T_{c}=8.5 K. Magnetization versus temperature (M {\it vs} T) data obtained for fixed magnetic fields above 1 kOe show a superconducting transition which becomes broader as the field is increased. The data are interpreted in terms of the diamagnetic lowest Landau level (LLL) fluctuation theory. The scaling analysis gives values of the superconducting transition temperature Tc(H)T_{c}(H) consistent with Hc2(T)H_{c2}(T)% . We search for universal 3D LLL behavior by comparing scaling results for Nb and YBaCuO, but obtain no evidence for universality.Comment: 5 pages, 6 figures, Accepted for publication in Phys.Rev.
    • …
    corecore